Project

RIS-ID

{{risid}}

Biological soil crust algae in the polar regions ??? biodiversity, genetic diversity and ecosystem resilience under global change scenarios (POLARCRUST)

Terrestrial green algae and cyanobacteria are typical and abundant components of biological soil crusts in the polar regions. These communities form water-stable aggregates that have important ecological roles in primary production, nitrogen fixation, nutrient cycling, water retention and stabilization of soils. Although available data on green alg

Great to see you here!

Did you know that there are {{related}} projects registered now with keywords matching your project, and {{close}} projects with fieldwork within 10km of your fieldwork site?

check them out here!

Thank you for adding your research project to the growing pool of knowledge about the research going on in Svalbard and its surrounding waters!

As we would like you to know a bit about what is going on in Svalbard in your discipline and fieldwork surroundings, we have selected some projects that should be interesting for you to have a look at. There are {{related}} projects registered in RiS that match with your keywords, and below you will find links to the 3 that have the most relevant match.

As we all work to reduce our environmental footprint, we want to give you an easy way to find projects that have fieldwork close to you, so you can contact the project owner and coordinate your logistics whenever possible. This could also help you save some expensive costs ;) There are {{close}} projects registered in RiS that have registered their fieldwork sites within 10 km from you, and below you will find links to the 3 closest fieldwork locations.

×
Back

Related Projects

×

Close projects

Your fieldworks Fieldworks close to yours
RiS map service is temporarily down
x
× <

Project date

Starts
2014-04-01

Ends
2017-03-30

Project status

{{statustext}} When your project description has been processed and your project added to RiS, the booking and application functions will be available. Remember that you need to register fieldwork periods to access these functions.

Associated projects

See all associated projects

Project type

  • field work

Discipline

  • terrestrial biology

Project Keywords

  • climate indicators / drought/precipitation indices / standardized precipitation index
  • biosphere / terrestrial ecosystems / alpine/tundra
  • biosphere / zoology / biomass
  • biosphere / vegetation / vegetation cover
  • biosphere / vegetation / dominant species

Fieldwork information

Click on map point to view details for the point.

RiS map service is temporarily down
x
Points close to each other:
{{point.posId}}. {{point.startDate}} – {{point.endDate}}: {{point.location}}


Type Period From To Coordinates Station Location
{{fieldwork.type}} {{fieldwork.mapType}} {{fieldwork.period}} {{fieldwork.startDate}} {{fieldwork.endDate}} E{{fieldwork.utm33East}}, N{{fieldwork.utm33North}}
{{fieldwork.lat | number : 6}}°N, {{fieldwork.long | number : 6}}°E
{{fieldwork.stationName}} {{fieldwork.location}}

Summary

Terrestrial green algae and cyanobacteria are typical and abundant components of biological soil crusts in the polar regions. These communities form water-stable aggregates that have important ecological roles in primary production, nitrogen fixation, nutrient cycling, water retention and stabilization of soils. Although available data on green algae and cyanobacteria are generally very limited for the Arctic and Antarctica, their functional importance as ecosystem developers in nutrient poor environments is regarded as high. Therefore, the main goal of the interdisciplinary project is, for the first time, a precise evaluation of their 1.) biodiversity as well as of 2.) the infra-specific genetic diversity, 3.) ecophysiological performance and 4.) transcriptomics of the most abundant taxa in biological soil crusts isolated from Arctic Svalbard. Biodiversity will be investigated using a classical culture approach in combination with molecular-taxonomical methods as well as with metagenomics. The infra-specific genetic diversity of the most abundant green algae and cyanobacteria will be studied using fingerprinting techniques, and a range of selected populations characterised in relation to their physiological plasticity. Temperature and water availability, two key environmental factors for terrestrial organisms, are currently changing in polar regions due to global warming, and hence their effect on growth and photosynthesis response patterns will be comparatively investigated. The data will indicate whether and how global change influence population structure and ecological performance of key organisms in polar soil crusts, and help to make predictions on the future significance of the ecological functions of these pioneer communities. Such a multiphasic approach has never been applied before to soil algae and cyanobacteria in both polar regions, and hence represents one of the key innovations of this proposal.

Project members

Participating institutions

Project updates

No updates yet

Publications

No publications yet

{{p.title}}

{{p.description}}

{{p.link}}

{{p.link}}

DataSet

No dataset yet